B. COM
SEMESTER II
CC 204
REGRESSION ANALYSIS.

PREPARED BY- PUJA KUMARI
ASSISTANT PROFESSOR
DEPARTMENT OF COMMERCE
PATNA WOMEN'S COLLEGE, PATNA.
EMAIL. ID- pujasngh26@gmail.com

Regression Analysis:

- The statistical tool with the help of which we are in a position to estimate (or predict) the unknown values of one variable from known values of another variable is called Regression.
- The dictionary meaning of the term 'regression' is the act of returning or going back.
- The line describing this tendency to regress or going back was called by Galton a 'Regression Line'.
- Regression Analysis is the branch of statistical theory widely used in almost all the disciplines.
- It is the basic technique for measuring or estimating the relationship among economic variables that constitute the essence of economic theory and economic life.

Significance of Regression analysis:

- It's a statistical methodology that helps estimate the strength and direction of the relationship between two or more variables.
- Predict sales in the near and long term.
- It also helps us to understand inventory levels, supply and demand.

<u>Uses of Regression analysis in</u> <u>companies:</u>

Companies might use regression analysis to understand, for example:

- Why customer service calls dropped in the past year or even the past month.
- Predict what sales will look like in the next six month.
- Whether to chose one marketing promotion over another.
- Whether to expand the business or create and market a new product.

Methods of Regression analysis:

Algebraic Methods:

1. Least square method

■ For X on Y

The regression equation:

$$X = a + b Y$$

where, X = Dependent variable

Y = Independent variable

Normal equation to find value of a & b :-

$$\sum X = n a + b \sum Y$$
 (n= number of pair of observation given)

$$\sum XY = a \sum Y + \sum y^2$$

Algebraic Method Continued:

■ For Y on X

The regression equation:

$$Y = a + b X$$

where, Y= Dependent variable

X = Independent variable

Normal equation to find value of a & b :-

$$\sum Y = n a + b \sum X$$
 (n= number of pair of observation given)

$$\sum XY = a \sum X + \sum X^2$$

■ **Example**: From the given data obtain the two regression equations using method of least squares.

X	0	1	2	3	4	5	6
Υ	3	2	1	4	5	6	2

Solution:

X	Υ	XY	X ²	γ2
0	3	0	0	9
1	2	2	1	4
2	1	2	4	1
3	4	12	9	16
4	5	20	16	25
5	6	30	25	36
6	2	12	36	4
∑X=	\sum Y	\sum XY = 78	$\sum X^2 = 91$	$\sum Y^2 = 95$

1) For Y on X

Normal equations are:

$$\sum Y = n a + b \sum X$$

 $\sum XY = a \sum X + b \sum X2$

So,
$$23 = 7a + 21b$$
 1 $78 = 21a + 91b$ 2

From solving eq.1 and eq.2, we get;

$$a = 2.32$$
 and $b = 0.32$

Now, Regression equation for Y on X is

$$Y = a + bX$$

So,
$$Y = 2.32 + 0.32$$

2) For X on Y

Normal equations are:

$$\sum X = n a + b \sum Y$$

$$\sum XY = a \sum Y + b \sum Y2$$

$$21 = 7a + 23b$$

$$78 = 23a + 95b$$

From solving eq.1 and eq.2, we get;

$$a = 1.47$$
 and $b = 0.46$

Now, Regression equation for X on Y is

$$X = a + bY$$

$$X = 1.47 + 0.46 Y$$

DEVIATION FROM ARITHMETIC MEAN METHOD:

■ The calculation by the least squares method are quit cumbersome when the values of X and Y are large. So the work can be simplified by using this method.

Steps:-

- Obtain X (mean of x − series)
- •Obtain \overline{Y} (mean of Y series)
- Obtain b_{XY} (Regression coefficient of X on Y)
- Regression Coefficient equation of Y on X

$$(Y-Y) = b_{YX} (X-X)$$

Regression coefficient equation of X on Y

$$(X - \overline{X}) = b_{XY} (Y - \overline{Y})$$

• Where

$$b_{xy} = \frac{\sum xy}{\sum x^2}$$

$$b_{yx} = \frac{\sum xy}{\sum y^2}$$

Example: From the following data, Find the regression equations

X	6	2	10	4	8
Υ	9	11	5	8	7

Solution:

$$X = \sum X/n = 30/5 = 6$$

 $Y = \sum Y/n = 40/5 = 8$

X	У	x= X - X	y= Y- ₹	x ²	y ²	Ху
6	9	0	1	0	1	0
2	11	-4	3	16	9	-12
10	5	4	-3	16	9	-12
4	8	-2	0	4	0	0
8	7	2	-1	4	1	-1
∑X=30	∑Y=40	∑x=0	∑y=0	$\sum x^2 = 40$	$\sum y^2 = 20$	∑xy= -25

(1) Regression equation for X on Y is

$$(X-\overline{X}) = b_{xy} (Y-\overline{Y})$$

$$b_{xy} = \frac{\sum xy}{\sum y^2} = \frac{-25}{20} = -1.25$$

$$X - 6 = -1.25(Y - 8)$$

$$X - 6 = -1.25Y + 10$$

$$X = -1.25Y + 16$$

2) Regression equation for Y on X $(Y - \overline{Y}) = b_{vx} (X - \overline{X})$

$$b_{yx} = \frac{\sum xy}{\sum x^2} = \frac{-25}{40} = -0.63$$

$$Y - 8 = -0.63(X - 8)$$

$$Y - 8 = -0.63X + 3.78$$

$$Y = -0.63 + 11.78$$

Deviation from assumed mean method:

As the name suggest, here we assume any mean and then solve the problem on basis of that.

Regression Coefficient equation of Y on X

$$(Y - \overline{Y}) = b_{YX} (X - \overline{X})$$

Regression coefficient equation of X on Y

$$(X - \overline{X}) = b_{XY} (Y - \overline{Y})$$

but here, formula for b_{xy} and b_{yx} will be different from arithmetic mean method.

$$b_{xy} = \frac{n\sum d_{x}d_{y} - \sum d_{x}\sum d_{y}}{n\sum d_{y}^{2} - \sum d_{y}^{2}}$$

$$b_{yx} = \frac{n\sum d_{x}d_{y} - \sum d_{x}\sum d_{y}}{n\sum d_{x}^{2} - \sum d_{x}^{2}}$$

■ Example: From the following data, Find the regression equations by assumed mean method.

X	1	1	2	4	5
Υ	2	3	1	2	4

Solution: Assume 2 as the mean for x series and 2 as mean for y series. (we can assume different mean for each. Its not necessary to pick same value)

X	у	Dev. From assumed mean 2		Dev. From assumed mean 2		
1	2	-1	1	0	0	0
1	3	-1	1	1	1	-1
2	1	0	0	-1	1	0
4	2	2	4	0	0	0
5	4	3	9	2	4	6
∑X=13	∑Y=12	<u>Σ</u> =3				

$$\overline{X} = (\sum x)/(n)$$
 and $\overline{Y} = (\sum y)/(n)$

Regression coefficient of X on Y:

$$b_{xy} = \frac{n\sum d_x d_y - \sum d_x \sum d_y}{n\sum d_y^2 - \sum d_y^2}$$

$$b_{xy} = \frac{5(5) - (3)(2)}{(5)(6) - 6} = 0.79$$

Regression equation of X on Y:

$$(X-\overline{X}) = b_{xy} (Y-\overline{Y})$$

 $X-2.6 = 0.79(Y-2.4)$
 $X = 0.79Y-1.89+2.6$
 $X = 0.79Y + 0.71$

Regression coefficient of Y on X:

$$b_{yx} = \frac{n\sum d_x d_y - \sum d_x \sum d_y}{n\sum d_x^2 - \sum d_x^2}$$

$$b_{yx} = \frac{5(5) - (3)(2)}{5(15) - 15} = \frac{19}{60} = 0.31$$

Regression equation of Y on X:

$$(Y - \overline{Y}) = b_{YX} (X - \overline{X})$$

$$Y-2.4 = 0.31(X-2.6)$$

$$Y = 0.31X + 1.58$$

Regression Coefficient:

- Regression coefficients are estimates of the unknown population parameters and describe the relationship between a predictor variable and the response. In linear regression, coefficients are the values that multiply the predictor values. Suppose you have the following regression equation: y = 3X + 5. In this equation, +3 is the coefficient, X is the predictor, and +5 is the constant.
- The sign of each coefficient indicates the direction of the relationship between a predictor variable and the response variable.
- A positive sign indicates that as the predictor variable increases, the response variable also increases.
- A negative sign indicates that as the predictor variable increases, the response variable decreases.
- The coefficient value represents the <u>mean</u> change in the response given a one unit change in the predictor. For example, if a coefficient is +3, the mean response value increases by 3 for every one unit change in the predictor.

Properties Of Regression Coefficient:

The coefficient of correlation is the geometric mean of the two regression coefficients.

- If one of the regression coefficient is greater than unity, the other must be less than unity.
- Both the regression coefficients will have the same sign, i.e., they will be either positive or negative.
- The coefficient of correlation will have the same sign as that of regression coefficients.
- The average value of the two regression coefficients would be greater than the value of correlation.
- Regression coefficients are independent of change of origin but not scale.

THANK YOU