B. COM SEMESTER II CC 204 REGRESSION ANALYSIS.

PREPARED BY- PUJA KUMARI ASSISTANT PROFESSOR
DEPARTMENT OF COMMERCE PATNA WOMEN'S COLLEGE, PATNA.
EMAIL. ID- pujasngh26@gmail.com

Regression Analysis:

■ The statistical tool with the help of which we are in a position to estimate (or predict) the unknown values of one variable from known values of another variable is called Regression.

■ The dictionary meaning of the term 'regression' is the act of returning or going back.

- The line describingthis tendency to regress or going back was called by Galton a 'Regression Line'.
- Regression Analysis is the branch of statistical theory widely used in almost all the disciplines.
- It is the basic technique for measuring or estimating the relationship among economic variables that constitute the essence of economic theory and economic life.

Significance of Regression analysis:

- It's a statistical methodology that helps estimate the strength and direction of the relationship between two or more variables.
- Predict sales in the near and long term.

■ It also helps us to understand inventory levels, supply and demand.

Uses of Regression analysis in companies:

Companies might use regression analysis to understand, for example:

- Why customer service calls dropped in the past year or even the past month.

■ Predict what sales will look like in the next six month.

- Whether to chose one marketing promotion over another.
- Whether to expand the business or create and market a new product.

Methods of Regression analysis:

Algebraic Methods:

1. Least square method

- For X on Y

The regression equation :

$$
\begin{aligned}
& X=a+b Y \\
& \text { where, } X=\text { Dependent variable } \\
& \qquad Y=\text { Independent variable }
\end{aligned}
$$

Normal equation to find value of $a \& b$:-

$$
\begin{aligned}
& \sum X=n a+b \sum Y \quad(n=\text { number of pair of observation given }) \\
& \sum X Y=a \sum Y+\sum y^{2}
\end{aligned}
$$

Algebraic Method Continued:

- For Y on X

The regression equation :

$$
\begin{aligned}
& Y=a+b X \\
& \text { where, } Y=\text { Dependent variable } \\
& \quad X=\text { Independent variable }
\end{aligned}
$$

Normal equation to find value of $\mathrm{a} \& \mathrm{~b}$:-

$$
\begin{array}{ll}
\sum Y=n a+b \sum X \quad(n=\text { number of pair of observation given }) \\
\sum X Y=a \sum X+\sum X^{2} &
\end{array}
$$

- Example : From the given data obtain the two regression equations using method of least squares.

X	0	1	2	3	4	5	6
Y	3	2	1	4	5	6	2

- Solution:

X	Y	$X Y$	X^{2}	Y^{2}
0	3	0	0	9
1	2	2	1	4
2	1	2	4	1
3	5	12	9	16
4	6	20	16	25
5	2	30	25	36
6	$\sum Y$	12	36	4
$\Sigma X=$	$\sum X Y=78$	$\sum X^{2}=91$	$\sum Y^{2}=95$	

1) For Y on X

Normal equations are :

$$
\begin{aligned}
& \sum Y=n a+b \Sigma X \\
& \Sigma X Y=a \Sigma X+b \Sigma X 2
\end{aligned}
$$

So,

$$
\begin{array}{ll}
23=7 a+21 b & \ldots \ldots1 \\
78=21 a+91 b & \ldots \ldots2
\end{array}
$$

From solving eq. 1 and eq.2, we get ;

$$
\mathrm{a}=2.32 \text { and } \mathrm{b}=0.32
$$

Now, Regression equation for Y on X is

$$
Y=a+b X
$$

So,

$$
Y=2.32+0.32
$$

2) For X on Y

Normal equations are :

$$
\begin{aligned}
& \Sigma \mathrm{X}=\mathrm{na}+\mathrm{b} \sum \mathrm{Y} \\
& \Sigma \mathrm{XY}=\mathrm{a} \sum \mathrm{Y}+\mathrm{b} \sum \mathrm{Y} 2
\end{aligned}
$$

So,

$$
\begin{array}{ll}
21=7 a+23 b & \ldots \ldots1 \\
78=23 a+95 b & \ldots \ldots \ldots .2
\end{array}
$$

From solving eq. 1 and eq. 2 , we get ;

$$
a=1.47 \text { and } b=0.46
$$

Now, Regression equation for X on Y is

$$
X=a+b Y
$$

So,

$$
X=1.47+0.46 Y
$$

DEVIATION FROM ARITHMETIC MEAN METHOD:

- The calculation by the least squares method are quit cumbersome when the values of X and Y are large. So the work can be simplified by using this method.
Steps:-
- Obtain X (mean of x - series)
- Obtain \bar{Y} (mean of Y - series)
- Obtain $b_{X Y}$ (Regression coefficient of X on Y)
- Regression Coefficient equation of Y on X

$$
(Y-Y)=b_{Y X}(X-X)
$$

- Regression coefficient equation of X on Y

$$
(X-\bar{X})=b_{X Y}(Y-\bar{Y})
$$

- Where

$$
\begin{aligned}
& b_{x y}=\sum x^{\sum} x^{2} \\
& \text { and } \\
& b_{y x}=\sum x^{y}
\end{aligned}
$$

- Example: From the following data, Find the regression equations

X	6	2	10	4	8
Y	9	11	5	8	7

Solution:

$$
\begin{aligned}
& X=\sum X / n=30 / 5=6 \\
& Y=\sum Y / n=40 / 5=8
\end{aligned}
$$

X	y	$x=X-X$	$y=Y-Y$	x^{2}	y^{2}	$X y$
6	9	0	1	0	1	0
2	11	-4	3	16	9	-12
10	5	4	-3	16	9	-12
4	8	-2	0	4	0	0
8	7	2	-1	4	1	-1
$\sum X=30$	$\sum Y=40$	$\sum x=0$	$\sum y=0$	$\sum x^{2}=40$	$\sum y^{2}=20$	$\sum x y=-25$

(1) Regression equation for X on Y is

$$
\begin{aligned}
& (\mathrm{X}-\overline{\mathrm{X}})=\mathrm{b}_{\mathrm{xy}}(\mathrm{Y}-\overline{\mathrm{Y}}) \\
& b_{x y}=\frac{\sum x y}{\sum y^{2}}=\frac{-25}{20}=-1.25 \\
& X-6=-1.25(Y-8) \\
& X-6=-1.25 Y+10 \\
& X=-1.25 Y+16
\end{aligned}
$$

2) Regression equation for Y on X

$$
\begin{aligned}
& (\mathrm{Y}-\overline{\mathrm{Y}})=\mathrm{b}_{\mathrm{yx}}(\mathrm{X}-\overline{\mathrm{X}}) \\
& \quad b_{y x}=\frac{\sum x y}{\sum x^{2}}=\frac{-25}{40}=-0.63 \\
& Y-8=-0.63(X-8) \\
& Y-8=-0.63 X+3.78 \\
& Y=-0.63+11.78
\end{aligned}
$$

Deviation from assumed mean method:

As the name suggest, here we assume any mean and then solve the problem on basis of that.
Regression Coefficient equation of Y on X

$$
(Y-\bar{Y})=b_{Y X}(X-\bar{X})
$$

Regression coefficient equation of X on Y

$$
(X-\bar{X})=b_{X Y}(Y-\bar{Y})
$$

but here, formula for $b_{X Y}$ and $b_{Y X}$ will be different from arithmetic mean method.

$$
\begin{aligned}
& b_{x y}=\frac{n \sum d_{x} d_{y}-\sum d_{x} \sum d_{y}}{n \sum d_{y}^{2}-\sum d_{y}^{2}} \\
& b_{y x}=\frac{n \sum d_{x} d_{y}-\sum d_{x} \sum d_{y}}{n \sum d_{x}^{2}-\sum d_{x}^{2}}
\end{aligned}
$$

- Example:

From the following data, Find the regression equations by assumed mean method.

X	1	1	2	4	5
Y	2	3	1	2	4

Solution : Assume 2 as the mean for x series and 2 as mean for y series. (we can assume different mean for each. Its not necessary to pick same value)

X	y	Dev. From assumed mean 2		Dev. From assumed mean 2		
1	2	-1	1	0	0	0
1	3	-1	1	1	1	-1
2	1	0	0	-1	1	0
4	2	2	4	0	0	0
5	4	3	9	2	4	6
$\sum X=13$	$\sum Y=12$	$\sum=3$				

- $\bar{X}=\left(\sum \mathrm{x}\right) /(\mathrm{n})$ and $\overline{\mathrm{Y}}=\left(\sum \mathrm{y}\right) /(\mathrm{n})$

Regression coefficient of X on Y :

$$
\begin{aligned}
& b_{x y}=\frac{n \sum d_{x} d_{y}-\sum d_{x} \sum d_{y}}{n \sum d_{y}{ }^{2}-\sum d_{y}{ }^{2}} \\
& b_{x y}=\frac{5(5)-(3)(2)}{(5)(6)-6}=0.79
\end{aligned}
$$

Regression equation of X on Y :

$$
\begin{aligned}
&(\mathrm{X}-\overline{\mathrm{X}})=\mathrm{b}_{\mathrm{xy}}(\mathrm{Y}-\mathrm{Y}) \\
& \mathrm{X}-2.6=0.79(\mathrm{Y}-2.4) \\
& \mathrm{X}=0.79 \mathrm{Y}-1.89+2.6 \\
& \mathrm{X}=0.79 \mathrm{Y}+0.71
\end{aligned}
$$

Regression coefficient of Y on X :

$$
\begin{aligned}
& b_{y x}=\frac{n \sum d_{x} d_{y}-\sum d_{x} \sum d_{y}}{n \sum d_{x}{ }^{2}-\sum d_{x}{ }^{2}} \\
& b_{y x}=\frac{5(5)-(3)(2)}{5(15)-15}=\frac{19}{60}=0.31
\end{aligned}
$$

- Regression equation of Y on X :

$$
\begin{aligned}
& (Y-\bar{Y})=b_{Y X}(X-\bar{X}) \\
& Y-2.4=0.31(X-2.6) \\
& Y=0.31 X+1.58
\end{aligned}
$$

Regression Coefficient:

- Regression coefficients are estimates of the unknown population parameters and describe the relationship between a predictor variable and the response. In linear regression, coefficients are the values that multiply the predictor values. Suppose you have the following regression equation: $y=3 X+5$. In this equation, +3 is the coefficient, X is the predictor, and +5 is the constant.
- The sign of each coefficient indicates the direction of the relationship between a predictor variable and the response variable.
- A positive sign indicates that as the predictor variable increases, the response variable also increases.
- A negative sign indicates that as the predictor variable increases, the response variable decreases.
- The coefficient value represents the mean change in the response given a one unit change in the predictor. For example, if a coefficient is +3 , the mean response value increases by 3 for every one unit change in the predictor.

Properties Of Regression Coefficient:

The coefficient of correlation is the geometric mean of the two regression coefficients.

- If one of the regression coefficient is greater than unity, the other must be less than unity.
- Both the regression coefficients will have the same sign, i.e., they will be either positive or negative.
- The coefficient of correlation will have the same sign as that of regression coefficients.
- The average value of the two regression coefficients would be greater than the value of correlation.
- Regression coefficients are independent of change of origin but not scale.

THANK YOU

